Lista 6

1^a Questão:

Um capacitor na forma de um paralelepípedo tem um lado de área A e é disposto no plano xy com carga livre Q. A uma altura $z=s_1+s_2$ está colocada a outra face do capacitor com carga livre -Q. Todo o espaço interior é de material dielétrico. Entre z=0 e $z=s_1$ a permissividade elétrica é ϵ_1 enquanto de $z=s_1$ a $z=s_2$ a permissividade é ϵ_2 . Decreva os campos \vec{D} , \vec{E} e \vec{P} no interior. Encontre as cargas de polarização e a capacitância. Qual é o trabalho que é necessário realizar para carregar esse capacitor? Qual é a energia eletrostática total armazenada nesse capacitor?

2^a Questão:

Um capacitor é formado por duas cascas cilíndricas concêntricas de raios r_1 e r_2 com material dielétrico entre elas. Considerando que metade do comprimento L apresenta permissividade ϵ_1 e a outra metade ϵ_2 descreva: O campo vetorial de deslocamento elétrico, o campo elétrico, o potencial elétrico e as densidades de carga de polarização. Qual é a capacitância por unidade de comprimento? Você pode considerar o cilindro longo $(L >> r_i)$.

3^a Questão:

- a) Um dielétrico com permissividade ϵ_1 preenche todo o espaço z > 0. O restante apresenta permissividade ϵ_2 . Uma carga livre pontual Q é posta na posição $\vec{r} = a\hat{z}$. Usando o método das imagens, encontre o campo em todo espaço. Qual é a densidade de cargas de polarização? Qual é a força sobre a carga Q?
- b) Encontre a força sobre um dipolo, $\vec{P} = P_0 \hat{z}$, que é posto a uma distância "a"acima de um plano que divide um dielétrico, ϵ para z < 0 do vácuo, ϵ_0 para z > 0. Obs: partindo do exemplo análogo da carga, é possível resolver esse problema sem contas adicionais maiores.

4^a Questão:

Um cilindro dielétrico com permissividade ϵ é introduzido numa região onde havia um campo uniforme $\vec{E}_0 = E_0 \hat{z}$ e disposto ortogonalmente ao campo. Descreva o campo elétrico em todo o espaço após a introdução do cilindro.